709 research outputs found

    4-terminal tandem photovoltaic cell using two layers of PTB7:PC71BM for optimal light absorption

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS applied materials and interfaces, copyright © American Chemical Society, after peer review and technical editing by the publisher and may be found at http://dx.doi.org/10.1021/acsami.5b04537A 4-terminal architecture is proposed in which two thin active layers (<100 nm) of PTB7:PC71BM are deposited on a two-sided ITO covered glass substrate. By modeling the electric field distribution inside the multilayer structure and applying an inverse solving problem procedure, we designed an optimal device architecture tailored to extract the highest photocurrent possible. By adopting such a 4-terminal configuration, we numerically demonstrated that even when the two subcells use identical absorber materials, the performance of the 4-terminal device may overcome the performance of the best equivalent single-junction device. In an experimental implementation of such a 4-terminal device, we demonstrate the viability of the approach and find a very good match with the trend of the numerical predictions.Peer ReviewedPostprint (author's final draft

    Monolithic CIGS-Perovskite Tandem Cell for an Optimal Light Harvesting Without Current Matching

    Get PDF
    We present a novel monolithic architecture for optimal light harvesting in multijunction thin film solar cells. In the configuration we consider, formed by a perovskite (PVK) cell overlying a CIGS cell, the current extracted from the two different junctions is decoupled by the insertion of a dielectric nonperiodic photonic multilayer structure. This photonic multilayer is designed by an inverse integration approach to confine the incident sunlight above the PVK band gap in the PVK absorber layer, while increasing the transparency for sunlight below the PVK band gap for an efficient coupling into the CIGS bottom cell. To match the maximum power point voltages in a parallel connection of the PVK and CIGS cells, the latter is divided into two subcells by means of a standard three-laser scribing connection. Using realistic parameters for all the layers in the multijunction architecture we predict power conversion efficiencies of 28%. This represents an improvement of 24% and 26% over the best CIGS and PVK single-junction cells, respectively, while at the same time outperforms the corresponding current-matched standard tandem configuration by more than two percentage points.Peer ReviewedPostprint (author's final draft

    Circumventing UV light induced nano-morphology disorder to achieve long lifetime PTB7-Th:PCBM based solar cells

    Get PDF
    Large area flexible electronics rely on organic or hybrid materials prone to degradation limiting the device lifetime. For many years, photo-oxidation has been thought to be one of the major degradation pathways. However, intense illumination may lead to a burn-in or a rapid decrease in performance for devices completely isolated from corrosive elements as oxygen or moisture. The experimental studies we present in here indicate that a plausible triggering for the burn-in is a spin flip after a UV photon absorption leading to the accumulation of electrostatic potential energy that initiates a rapid destruction of the nano-morpholgy in the fullerene phase of a polymer cell. To circumvent this and achieve highly stable and efficient devices, we induce a robust nano-crystalline ordering in the PCBM phase prior to UV illumination. In that event, PTB7-Th:PC71BM cells are shown to exhibit T80 lifetimes larger than 1.6 years under a continuous UV-filtered 1-sun illumination, equivalent to 7 years for sunlight harvesting at optimal orientation and 10 years for vertical applications.Peer ReviewedPostprint (author's final draft

    Spondyloarthropathies in autoimmune diseases and vice versa

    Get PDF
    Polyautoimmunity is one of the major clinical characteristics of autoimmune diseases (ADs). The aim of this study was to investigate the prevalence of ADs in spondyloarthropathies (SpAs) and vice versa. This was a two-phase cross-sectional study. First, we examined the presence of ADs in a cohort of patients with SpAs (). Second, we searched for the presence of SpAs in a well-defined group of patients with ADs () including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and Sjögren’s syndrome (SS). Among patients with SpAs, ankylosing spondylitis was observed in the majority of them (55.6%). There were two patients presenting with SS in the SpA group (1.4%) and 5 patients with autoimmune thyroiditis (3.5%). The global prevalence of ADs in SpAs was 4.86%. In the ADs group, there were 5 patients with SpAs (0.46%). Our results suggest a lack of association between SpAs and ADs. Accordingly, SpAs might correspond more to autoinflammatory diseases rather than to ADs

    Semi-transparent polymer solar cells

    Get PDF
    Copyright 2015 Society of Photo Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, or modification of the contents of the publication are prohibited.Over the last three decades, progress in the organic photovoltaic field has resulted in some device features which make organic cells applicable in electricity generation configurations where the standard silicon-based technology is not suitable, for instance, when a semi-transparent photovoltaic panel is needed. When the thin film solar cell performance is evaluated in terms of the device's visible transparency and power conversion efficiency, organic solar cells offer the most promising solution. During the last three years, research in the field has consolidated several approaches for the fabrication of high performance semi-transparent organic solar cells. We have grouped these approaches under three categories: devices where the absorber layer includes near-infrared absorption polymers, devices incorporating one-dimensional photonic crystals, and devices with a metal cavity light trapping configuration. We herein review these approaches.Peer ReviewedPostprint (author's final draft

    Circumventing UV light induced nanomorphology disorder to achieve long lifetime PTB7-Th:PCBM based solar cells

    Get PDF
    Aquest article pot ser utilitzat per a fins no comercials, d'acord amb els termes i condicions d’auto-arxiu de Wiley.Large area flexible electronics rely on organic or hybrid materials prone to degradation limiting the device lifetime. For many years, photo-oxidation has been thought to be one of the major degradation pathways. However, intense illumination may lead to a burn-in or a rapid decrease in performance for devices completely isolated from corrosive elements as oxygen or moisture. The experimental studies which are presented in here indicate that a plausible triggering for the burn-in is a spin flip after a UV photon absorption leading to the accumulation of electrostatic potential energy that initiates a rapid destruction of the nanomorpholgy in the fullerene phase of a polymer cell. To circumvent this and achieve highly stable and efficient devices, a robust nanocrystalline ordering is induced in the PCBM phase prior to UV illumination. In that event, PTB7-Th:PC71BM cells are shown to exhibit T80 lifetimes larger than 1.6 years under a continuous UV-filtered 1-sun illumination, equivalent to 7 years for sunlight harvesting at optimal orientation and 10 years for vertical applications.Peer ReviewedPostprint (author's final draft

    Neutral water splitting catalysis with a high FF triple junction polymer cell

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in CS catalysis, copyright © American Chemical Society, after peer review and technical editing by the publisher and may be found at http://dx.doi.org/10.1021/acscatal.6b01036We report a photovoltaics-electrochemical (PV-EC) assembly based on a compact and easily processable triple homojunction polymer cell with high fill factor (76%), optimized conversion efficiencies up to 8.7%, and enough potential for the energetically demanding water splitting reaction (V-oc = 2.1 V). A platinum-free cathode made of abundant materials is coupled to a ruthenium oxide on glassy carbon anode (GC-RuO2) to perform the reaction at optimum potential (Delta E = 1.70-1.78 V, overpotential = 470-550 mV). The GC-RuO2 anode contains a single monolayer of catalyst corresponding to a superficial concentration (Gamma) of 0.15 nmol cm(-2) and is highly active at pH 7. The PV-EC cell achieves solar to hydrogen conversion efficiencies (STH) ranging from 5.6 to 6.0%. As a result of the solar cell's high fill factor, the optimal photovoltaic response is found at 1.70 V, the minimum potential at which the electrodes used perform the water splitting reaction. This allows generating hydrogen at efficiencies that would be very similar (96%) to those obtained as if the system were to be operating at 1.23 V, the thermodynamic potential threshold for the water splitting reaction.Peer ReviewedPostprint (author's final draft

    Monolithic CIGS-Perovskite tandem cell for optimal light harvesting without current matching

    Get PDF
    We present a novel monolithic architecture for optimal light harvesting in multijunction thin film solar cells. In the configuration we consider, formed by a perovskite (PVK) cell overlying a CIGS cell, the current extracted from the two different junctions is decoupled by the insertion of a dielectric nonperiodic photonic multilayer structure. This photonic multilayer is designed by an inverse integration approach to confine the incident sunlight above the PVK band gap in the PVK absorber layer, while increasing the transparency for sunlight below the PVK band gap for an efficient coupling into the CIGS bottom cell. To match the maximum power point voltages in a parallel connection of the PVK and CIGS cells, the latter is divided into two subcells by means of a standard three-laser scribing connection. Using realistic parameters for all the layers in the multijunction architecture we predict power conversion efficiencies of 28%. This represents an improvement of 24% and 26% over the best CIGS and PVK single-junction cells, respectively, while at the same time outperforms the corresponding current-matched standard tandem configuration by more than two percentage points.Peer ReviewedPostprint (author's final draft

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore